1. 研究目的与意义
随着电子商务的飞速发展和云应用技术的普及,商业的信息化浪潮已经席卷到各行各业。
在电子商务经营中,利用数据挖掘等技术针对历史经营数据进行分析挖掘,以辅助经营决策,是企业提高收益与市场竞争力的手段之一。
电子商务以其网络化、全球化、成本低廉、方便快捷、交易透明等优点逐步发展成为成熟的商业模式。
2. 研究内容和预期目标
推荐系统的目的模拟现实生活中销售员向消费者推荐商品的过程,协助消费找到自己所满意的商品。
现有电子商务推荐算法往往是依据用户浏览行为将用户聚类,以相似用户行为作为推荐依据,这一过程忽略了用户对商品的情感态度。
而实际上,当用户对商品持积极情感时则会提高用户满意度,否则用户满意度则会降低。
3. 国内外研究现状
推荐算法方面的研究,不少研究者在这方面做了大量工作,为推动推荐系统的发展奠定了基础。
其中,有关电子商务推荐系统的文章在每年的 ACM 数据挖掘会议中所占比重逐年加大。
同时,为了推动电子商务推荐算法以及数据挖掘的发展,ACM 的 WEBKDD 研讨小组中电子商务推荐为一个重要的研讨主题。
4. 计划与进度安排
采用文献研究法,通过广泛地查阅相关资料和文献,借鉴别人研究的成果之上,深入分析、思考,形成自己的观点。
研究计划:一、收集相关资料,并对资料进行整理和深入分析二、根据资料和研究计划拟写开题报告 三、进行开题报告的答辩 四、撰写论文初稿五、对论文反复修改、定稿 六、参加论文答辩
5. 参考文献
[1] P. Resnick, H. R. Varian. Recommender systems, Commun. ACM, vol.40, iss.3, pp. 56-58, 1997. [2] B. P. S. Murthi, S. Sarkar. The Role of the Management Sciences in Research on Personalization, Manage. Sci,, vol. 49, no. 10, pp. 1344-1362, 2003. [3] Hill W, Stead L, Rosenstein M, et al. Recommending and Evaluating Choices in a Virtual Community of Use. In: Proceedings of the ACM SIGGHI Conference on Human Factors in Computing Systems (CHI#8217;95), Denver, Colorado, USA ACM Press, 1995, pp.194-201. [4] G. Adomavicius, A. Tuzhilin. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions, IEEE Trans. On Knowl. And Data Eng., vol.17, no.6, pp.734-749, 2005. [5] T. W. Malone, K. R. Grant, F. A. Turbak. The information lens: an intelligent system for information sharing in organizations, SIGCHI Bull., vol.17, no.4, pp.1-8, 1986. [6] M. Balabanovi, Y. Shoham. Learing Information Retrieval Agents: Experiments with Automated Web Browsing, in AAAI Spring Symposium on Information Gathering, pp. 13-18, 1995. [7] H. Lieberman. Ltizia: An Agent that Assists Web Browsing, in Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 924-929, 1995. [8] R. Armstrong, D. Freitag, T. Joachims, T. Mitchell. Web Watcher: A learning Apprentice for the World Wide Web, in AAAI Spring Symposium on Information Gathering, pp. 6-12, 1995. [9] M. Pazzani, J. Muramatsu, D. Billsus. Syskill amp; Webert: Indentifying interesting web sites, presented at the Proceedings of the thirteenth national conference on Artificial intelligence, vol.1 Portland, Oregon, 1996. [10] M. Deshpande, G. Karypis. Item-based top-n recommendation algorithms, ACM Trans. Inf. Syst., vol.22, no.1, pp. 143-177, 2004. [11] D. M. Nichols. Implicit rating and filtering in Proceedings of the 5th DELOS Workshop on Filtering and Collaborative Filtering, pp.31-36, 1998. [12] D. Goldberg, D. Nichols, B. M. Oki, D. Terry. Using collaborative filtering to weave an information tapestry, Commun. ACM, vol.35, no.12, pp. 61-70, 1992.[13] J. A. Konstan, B.N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, J. Riedl. GroupLens:63 applying collaborative filtering to Usenet news, Commun. ACM, vol. 40, no.3, pp.77-87, 1997 applying collaborative filtering to Usenet news, Commun. ACM, vol. 40, no.3, pp.77-87, 1997. [14] J. L. Herlocker, J. A. Konstan, A. Borchers, J. Riedl. An algorithmic framework for performing collaborative filtering, presented at the Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, Berkeley, California, United States, 1999. [15]曾春,吴潇,周立柱.个性化服务技术综述[J].软件学报,2009, 20(22): 350-363. [16]许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报, 2009, 20(2):350-362. [17]王立才,孟祥武,张玉洁.上下文感知推荐系统[J].软件学报, 2012, 23(1):1-20. [18]任磊.推荐系统关键技术研究[D].华东师范大学博士论文, 2012. [19]李涛.推荐系统中若干关键问题研究[D].南京航空航天大学博士论文, 2008. [20]王征,谭龙江.基于客户心理挖掘和预测的推荐系统[J].计算机工程与设计,2012,33(11):4347-4351. [21]崔春生,吴祈宗,王莹.用于推荐系统聚类分析的用户兴趣度研究[J].计算机工程与应用, 2011, 47(7):226-228. [22] Jiawei Han, Micheline Kamber. Data Mining: Concepts and Techniques (2nd ed.), Morgan Kaufmann Publishers, 2006 (中译本:范明,孟小峰.数据挖掘概念与技术.北京:机械工业出版社,2007). [23] Tan P N, Steinbach M, Kumar V. Introduction to Data Mining. MA: Addison-Wesley, 2005. [24] Agrawal, R., Srikant, R. Fast Algorithms for mining Asociation Rules. IBM Research Report RJ9839, June 1994, IBM Almaden Research Center, San Jose, Calif.. 1994. [25] Quinlan J. R. Introduction of decision trees. Machine Learning,1986, 1(1):81-106. [26] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734-749. [27] Goldberg D, Nichols D, Oki B M, et al. Using Collaborative Filtering to weave an information Tapestry. Communications of the ACM, 1992, 35(12):61-70. [28] Shani G, Brafman R, Heckerman D. An MDP-based recommender systems[C]. In: Proceedings of Eighteenth Conference on Uncertainty in Artificial Intelligence.[29] Ilic M, Leite J, Slota M. ExplicitDynamic User Profiles for a Collaborative Filtering Recommender System. In: Advances in 62[30] Hatzivassiloglou, Vasileios and Kathy McKeown. Predicting the semantic orientation of adjectives[C]. Proceedings of the 35th Annual Meeting of the Association for Computational Linguistic, madrid, 1997,174-181. [31] Janyce M. Wiebe. Learning Subjective Adjective from Corpora[C]. Proceedings of AAAI#8217;00, 2000,735-740. [32] Peter D. Turney and Michael L. Littman. Measuring praise and criticism: Inference of semantic orientationfromassociation[F].ACMTransactionsonInformationSystems, 21(4):315-346,2003. [33]邹嘉彦.评述新闻报道或文章色彩--正负两极性自动分类研究[C].自然语言理解与大规模内容计算--全国第届计算语言学联合学术会议.北京:清华大学出版社, 2005:21-23. [34]徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[C],第三届学生计算语言学研究研讨会论文集.2006:91:100. [35]王根,赵军.中文褒贬义词语倾向性的分析[C].第三届学生计算语言学研讨会论文集.2006:81-85. [36]姚天昉,聂青阳,李建超,李林林,娄德成,陈珂,付宇.一个用于汉语汽车评论意见挖掘系统[C].中文信息处理前沿进展.中国中文信息学会成立二十五周年学术会议.北京:清华大学出版社,2006:260-281.
以上是毕业论文开题报告,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。